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Outline

• Case Study 13: Load-limited design, Energy-limited design and 
Deflection-limited design

• Case Study 14: Safe Pressure Vessels
Multiple constraints
• Case Study 14’: Light pressure Vessels with MULTIPLE CONSTRAINT 

APPROACH
Theory: Method of the weight factor
Theory: Enhanced Digital Logic (EDL)
• Case Study 15: Precision devices
• Case Study 16: Long Span Transmission line
• Case Study 17: Light Cable
• Case Study 18: Kiln Walls
• Case Study 19: Insulation for Short-Term isothermal containers
• Case Study 20: Process for a Can
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The Fracture-limited design

Fracture-limited design is important
to control crack propagation
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Ashby Diagrams

<15 MPa.m1/2

Materials to avoid among mechanical engineers

But they use polymers all the time
Why???

Ceramics (1-6 MPa.m1/2) → view with deep suspicion
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The Fracture-limited design
The resistance of a material to the propagation of a crack is measured
by its plane-strain fracture toughness value (K1c)

𝜎𝑓 =
𝐾1𝑐 ∙ 𝐶

𝜋 ∙ 𝑎𝑐

When a brittle material is deformed, 

it deflects elastically until it fractures.

The stress at which this happens is:

Usually C=1

ac = the length of the largest crack

𝐾1 = stress intensity factor

𝐾1𝑐 = 𝐾1 → crack propagates

NDT = non-destructive testing

𝜎𝑓 𝑏𝑦 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛,

To consider all the stresses
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Case Study 13: 
Load-limited design

Objective • Minimize the volume (mass, cost)

Constraints • Design load specified

Free Variables • Choice of material

𝜎𝑓 =
𝐾1𝑐 ∙ 𝐶

𝜋 ∙ 𝑎𝑐

𝐶𝑎𝑟𝑟𝑦 𝑎 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑 𝑙𝑜𝑎𝑑
𝑜𝑟 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑖𝑛𝑔?

𝑬𝒂𝒔𝒚
F, 𝑝 𝐾1𝑐

𝑴𝒆𝒕𝒂𝒍𝒔,
𝒑𝒐𝒍𝒚𝒎𝒆𝒓 −𝒎𝒂𝒕𝒓𝒊𝒙 𝒄𝒐𝒎𝒑𝒐𝒔𝒊𝒕𝒆𝒔
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Case Study 13: 
Energy-limited design

𝑊𝑒𝑙 =
𝜎𝑦

2

2𝐸

Objective • Minimize the volume (mass, cost)

Constraints • Design energy specified

Free Variables • Choice of material

Springs FlywheelsContainment systems
for turbines

𝜎𝑓 =
𝐾1𝑐 ∙ 𝐶

𝜋 ∙ 𝑎𝑐

𝑊𝑚𝑎𝑥 =
𝐶2

2𝜋𝑎𝑐
∙
𝐾1𝑐

2

𝐸

Elastic energy

𝑊𝑚𝑎𝑥 𝐾1𝑐
2

𝐸
𝑀2 =

𝐾1𝑐
2

𝐸
≈ 𝐺𝑐 Toughness

for a given flaw size 
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Ductile-Brittle Temperature
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Case Study 13: 
Energy-limited design

𝑊𝑚𝑎𝑥 𝐾1𝑐
2

𝐸

𝑴𝒆𝒕𝒂𝒍𝒔, 𝒄𝒐𝒎𝒑𝒐𝒔𝒊𝒕𝒆𝒔
𝒂𝒏𝒅 𝒔𝒐𝒎𝒆 𝒑𝒐𝒍𝒚𝒎𝒆𝒓𝒔

Jc > 1 kJ/m2
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Case Study 13: 
Deflection-limited design

Objective • Minimize the volume (mass, cost)

Constraints • Design deflection specified

Free Variables • Choice of material

Snap on bottle tops Snap-together fasteners
𝑊𝑒𝑙 =

𝜎𝑦
2

2𝐸

𝜎𝑓 =
𝐾1𝑐 ∙ 𝐶

𝜋 ∙ 𝑎𝑐

𝜀 =
𝜎

𝐸 𝜀𝑓 =
𝐶

𝜋𝑎𝑐
∙
𝐾1𝑐
𝐸

𝜀𝑓
𝐾1𝑐

𝐸

𝑀2 =
𝐾1𝑐
𝐸

We want a large failure strain
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Case Study 13: 
Deflection-limited design

𝜀𝑓
𝐾1𝑐

𝐸

𝑷𝒐𝒍𝒚𝒎𝒆𝒓𝒔, 𝒆𝒍𝒂𝒔𝒕𝒐𝒎𝒆𝒓𝒔
𝒂𝒏𝒅 𝒕𝒐𝒖𝒈𝒉𝒆𝒔𝒕 𝒎𝒆𝒕𝒂𝒍𝒔

𝑲𝟏𝒄

𝑬
> 10-3 m1/2
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The Fracture-limited design
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Case Study 14: Safe Pressure Vessels
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Case Study 14: Safe Pressure Vessels

Two different approaches 

Leak-Before-Break (LBB)Yield-Before-Break (YBB)

cc*

σ

σff
σf  = σy

No failure, but distortion

Small vessels are designed

to allow general yield

Safe design

Smallest crack has a thickness greater 

than the thickness of the vessel wall
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Case Study 14: 
Safe Pressure Vessels
YBB

Two different approaches 

Yield-Before-Break (YBB)

cc*

σ

σff
σf  = σy

No failure, but distortion

Small vessels are designed

to allow general yield

a

F , pOn use

Distortion
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Case Study 14: 
Safe Pressure Vessels 
YBB

Objective • Maximize safety (YBB)

Constraints • R radius specified 

Free Variables • Choice of material

𝜋 ∙ 2 ∙ 𝑐∗ ≤ 𝐶2 ∙
𝐾1𝑐
𝜎𝑦

2

But not
Fail-safe

𝑀1 =
𝐾1𝑐
𝜎𝑦

𝜎 =
𝑝 ∙ 𝑅

2𝑡

𝑝 ≤
2𝑡 ∙ 𝐾1𝑐

𝑅 ∙ 𝜋 ∙ 𝑎∗𝑐
𝑝 𝐾1𝑐

𝑐∗
𝐾1𝑐
𝜎𝑦

𝑎𝑐 Tolerable crack size

𝜎 ≤
𝐶 ∙ 𝐾1𝑐

𝜋 ∙ 𝑎∗𝑐

If the inspection is faulty for some 
reasons the crack length is greater
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Case Study 14: 
Safe Pressure Vessels 
YBB

𝑡 =
𝑝 ∙ 𝑅

2𝜎
Since 𝑡 𝜎𝑦

𝐹𝑜𝑟 𝑇ℎ𝑖𝑛𝑛𝑒𝑟 𝑡
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Case Study 14: 
Safe Pressure Vessels 
YBB

𝑆𝑚𝑎𝑙𝑙 𝑏𝑜𝑖𝑙𝑒𝑟𝑠
(𝐻𝑎𝑟𝑑 𝑑𝑟𝑎𝑤𝑛 𝑐𝑜𝑝𝑝𝑒𝑟)

𝐿𝑜𝑤 𝑎𝑙𝑙𝑜𝑦𝑠 𝑠𝑡𝑒𝑒𝑙 = 𝐶𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 𝑐ℎ𝑜𝑖𝑐𝑒
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Case Study 14: 
Safe Pressure Vessels
LBB

Two different approaches 

Two different approaches 

cc*

σ

σff
σf  = σy

b

F , pOn use

Leak-Before-Break(LBB)

Safe design

Smallest crack has a thickness greater 

than the thickness of the vessel wall
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Case Study 14: 
Safe Pressure Vessels 
LBB

Objective • Maximize safety (LBB)

Constraints • R radius specified 

Free Variables • Choice of material

𝑀2 =
𝐾1𝑐

2

𝜎𝑦
𝜎𝑦 =

𝑝 ∙ 𝑅

2𝑡
𝑝 ≤

4𝐶2

𝜋𝑅
∙
𝐾1𝑐

2

𝜎𝑦

𝑝
𝐾1𝑐

2

𝜎𝑦

𝑎𝑐 Tolerable crack size

𝜎 ≤
𝐶 ∙ 𝐾1𝑐

𝜋 ∙ 𝑡/2

𝒃 =
𝒕

𝟐

𝑡 =
𝑝 ∙ 𝑅

2𝜎𝑦

𝑡 =
𝑝 ∙ 𝑅

2𝜎𝑦

𝑡 𝜎𝑦

𝑇ℎ𝑖𝑛𝑛𝑒𝑟 𝑡

Hp:
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Case Study 14: 
Safe Pressure Vessels 
LBB

𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑡𝑎𝑛𝑘𝑠
𝑜𝑓 𝑟𝑜𝑐𝑘𝑒𝑡𝑠

𝑁𝑢𝑐𝑙𝑒𝑎𝑟
𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 vessels

(316 Stainless Steel)
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Minimize the mass

Multiple constraints

Minimize the volume
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Case Study 14’: 
Materials for Light pressure Vessels
With MULTIPLE CONSTRAINT
APPROACH

𝜎 =
𝑝 ∙ 𝑅

2𝑡
≤

𝐾1𝑐

𝜋 ∙ 𝑐
𝑚1 = 2𝜋𝑅3 ∙ 𝑝 ∙ 𝜋 ∙ 𝑐 ∙

𝜌

𝐾1𝑐

𝑚 = 4𝜋𝑅2 ∙ 𝑡 ∙ 𝜌

𝜎 =
𝑝 ∙ 𝑅

2𝑡
≤ 𝜎𝑦

𝑚2 = 2𝜋𝑅3 ∙ 𝑝 ∙
𝜌

𝜎𝑦

𝑀1 =
𝜌

𝐾1𝑐

𝑀2 =
𝜌

𝜎𝑦

Objective Constraints Performance equation Index

Yield constraint

Fracture constraint
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Case Study 14’: 
Materials for Light pressure Vessels
With MULTIPLE CONSTRAINT
APPROACH

𝜌

𝜎𝑦
= 𝜋 ∙ 𝑐 ∙

𝜌

𝐾1𝑐
𝑀2 = 𝜋 ∙ 𝑐 ∙ 𝑀1
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Case Study 14’: 
Materials for Light pressure Vessels
With MULTIPLE CONSTRAINT
APPROACH

C = 10 mm

C = 10 µm
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Theory: Method of the weight factor

𝑍𝑝 = 𝛼𝐻 ∙
H

max(H)
+ 𝛼𝑀 ∙

M

max(M)
𝐸𝑥𝑎𝑚𝑝𝑙𝑒 𝑜𝑓 𝑖𝑡𝑠 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛

𝑜𝑛 𝑎 𝑝𝑟𝑜𝑐𝑒𝑠𝑠

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒

𝒀𝒐𝒖𝒏𝒈′𝒔 𝑴𝒐𝒅𝒖𝒍𝒖𝒔 𝑫𝒆𝒏𝒔𝒊𝒕𝒚

The most important point is to understand if you must 

maximize or minimize a property

Example:

𝐸

1/𝐸

1/𝜌

𝜌

With the normalization and the performance function you 

can consider all the properties that you want and with 

various order of magnitude.

But the importance coefficients? → EDL
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Theory: Enhanced Digital Logic

𝑍𝑝 = 𝛼𝐻 ∙
H

max(H)
+ 𝛼𝑀 ∙

M

max(M)

A really more important than B 3-1

A more important than B 2-1

A as imp. as B 1-1

Addition

σ 2 2 3 7 0,389 0,39

W 1 1 2 4 0,222 0,22

C 1 1 2 4 0,222 0,22

F 1 1 1 3 0,167 0,17

18 1

𝑰𝒎𝒑𝒐𝒓𝒕𝒂𝒏𝒄𝒆 𝑺𝒆𝒒𝒖𝒆𝒏𝒄𝒆
σ > W = C > F

σ Yield Strength

W Weldability

C Corrosion Resistance

F Fatigue Resistance
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Theory: Enhanced Digital Logic

And if I want to have a property value similar to another material? 

→ Normalisation MANCINI-MAURIZI 

𝐼𝑓 𝑡ℎ𝑒 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑖𝑠 𝑏𝑖𝑔𝑔𝑒𝑟 𝑡ℎ𝑎𝑛 𝑡ℎ𝑒 𝑡𝑎𝑟𝑔𝑒𝑡 𝑣𝑎𝑙𝑢𝑒 𝑁𝑛 = 1 −
𝐶𝑇𝐸𝑛 − 𝐶𝑇𝐸𝑡𝑎𝑟𝑔.

𝐶𝑇𝐸𝑚𝑎𝑥 − 𝐶𝑇𝐸𝑡𝑎𝑟𝑔.

Example : Coefficient of thermal expansion α (CTE) 

𝐼𝑓 𝑡ℎ𝑒 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑖𝑠 𝑠𝑚𝑎𝑙𝑙𝑒𝑟 𝑡ℎ𝑎𝑛 𝑡ℎ𝑒 𝑡𝑎𝑟𝑔𝑒𝑡 𝑣𝑎𝑙𝑢𝑒 𝑁𝑛 = 1 −
𝐶𝑇𝐸𝑡𝑎𝑟𝑔. − 𝐶𝑇𝐸𝑛

𝐶𝑇𝐸𝑡𝑎𝑟𝑔. − 𝐶𝑇𝐸𝑚𝑖𝑛

Again, a value close to 1 = the two CTEs are similar (the contrary to 0)
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Using materials at high temperatures
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Case Study 15: 
Materials for Precision devices

Es. Sub micrometer displacement gauge

Objective • Minimize distortion to maximize 
positional accuracy

Constraints • Tolerate heat flux 
• Tolerate vibration

Free Variables • Choice of material
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Case Study 15: 
Materials for Precision devices

The distortion is proportional to the gradient of strain
𝑑𝜀

𝑑𝑥
= 𝛼 ∙

𝑑𝑇

𝑑𝑥
==

𝛼

λ
∙ 𝑞

𝜀 = 𝛼(𝑇 − 𝑇0)

𝑞 = −λ
𝑑𝑇

𝑑𝑥

Fourier’s Law in steady state 𝑞 Heat flux
λ 𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦

𝑑𝑇

𝑑𝑥
𝑟𝑒𝑠𝑢𝑙𝑡𝑖𝑛𝑔 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡

𝑑𝜀

𝑑𝑥

λ

𝛼

𝑉
𝐸1/2

𝜌
Moreover, we want to avoid flexural vibrations at lowest 

frequencies; proportional to (finally must be stiff) →
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Case Study 15: 
Materials for Precision devices

𝑑𝜀

𝑑𝑥

λ

𝛼
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Case Study 15: 
Materials for Precision devices

Carbides? → Excellent performances, but difficult to shape
Copper → High density gives a low M2
Al alloys→ the cheapest and most easily shaped choice
Silicon→ the best choice
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Case Study 15: 
Materials for Precision devices

With some researches you can find better materials!
Ex. Invar 
Add Record IF IT HAS A SENSE
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Conductors, insulators and dielectrics



Materials Selection 36Monday, 05 November 2018

Case Study 16: 
Materials for 
Long Span Transmission line

Objective • Maximize current flux

Constraints • Easy to manufacture
• Must be strong?
• Dimensions fixed

Free Variables • Choice of material



Materials Selection 37Monday, 05 November 2018

Case Study 16: 
Materials for 
Long Span Transmission line

[http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/thercond.html]

𝐿 ∝ 𝐾 =
λ

𝜌𝑒

Wiedemann-Franz Law
𝐿 Lorenz number

𝐾 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦
λ 𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦
𝜌𝑒 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝑟𝑒𝑠𝑖𝑠𝑡𝑖𝑣𝑖𝑡𝑦

𝐾
λ

𝜌𝑒

Index from General Knowledge
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Case Study 16: 
Materials for 
Long Span Transmission line
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Case Study 16: 
Parenthesis about real life

On a standard shape

How the shape can change the properties→ Decrease the I

𝑛𝜋𝑟2 = 𝑏2 = 𝐴

𝐼0 =
𝐴2

12
=

𝑛𝜋𝑟2 2

12

𝐼 = 𝐼0 ∙ 𝑛 =
𝑛𝜋𝑟4

4

On the single wire

𝑰

𝑰𝟎
=

𝒏𝝅𝒓𝟒

𝟒
𝒏𝝅𝒓𝟐 𝟐

𝟏𝟐

=
𝟑

𝒏𝝅
∝
𝟏

𝒏
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Case Study 17: 
Materials for Light Cable

Objective • Minimize the mass

Constraints • Good conductor 
• Easy to manufacture
• Dimensions fixed

Free Variables • Choice of material
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Case Study 17: 
Materials for Light Cable

http://toelatingsexamen.org/en/app/course/71/pouillets-law-electrodynamics?chapterID=84&sectionID=3

Pouillet’s Law

𝑚 = 𝜌 ∙ 𝐿 ∙ 𝐴

𝑟 = 𝜌𝑒
𝐿

𝐴

Index from « Equations »

𝐴 = 𝜌𝑒
𝐿

𝑟

𝜌𝑒 Electrical resistivity
r Electrical resistance of a uniform specimen of the material

𝑚 = (𝜌 ∙ 𝜌𝑒) ∙
𝐿2

𝑟

𝑚
1

𝜌 ∙ 𝜌𝑒



Materials Selection 42Monday, 05 November 2018

Excellent M1 and it is the lighter material

Case Study 17: 
Materials for Light Cable



Materials Selection 43Monday, 05 November 2018

Case Study 18: 
Materials for Kiln Walls

Objective • Minimize energy consumed in 
firing cycle 

Constraints • Maximum and minimum operating 
temperature 

• Possible limit on W for space 
reasons

Free Variables • Choice of material
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Case Study 18: 
Materials for Kiln Walls

𝑄1 = −λ
𝑇𝑖 − 𝑇0
𝑤

∙ 𝑡

q.

𝑇𝑖

𝑇0

𝑇0+𝑖

𝑡 = 0

𝑡 > 0

q. = Heat flux
λ = Thermal conductivity
𝐶𝑝 = Specific heat capacity

t = time 
Heat loss by conduction

Heat (loss) absorbed by walls

𝑄2 =
∆𝑇 ∙ 𝑤 ∙ 𝜌 ∙ 𝐶𝑝

2

𝑇𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 𝑢𝑠𝑒 𝑄 = 𝑄1+𝑄2

w

Energy-efficient kiln walls? Reduce 𝝀 and w 

𝑇ℎ𝑢𝑠, 𝑤𝑒 𝑤𝑎𝑛𝑡 𝑎 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑄 𝑤 −→ a w that correspond to
𝑑𝑄

𝑑𝑤
= 0
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Case Study 18: 
Materials for Kiln Walls

q.

𝑇𝑖

𝑇0

𝑇0+𝑖

𝑡 = 0

𝑡 > 0

w

q. = Heat flux
λ = Thermal conductivity
𝐶𝑝 = Specific heat capacity

t = time 

a = Thermal diffusivity

𝑄 = 𝑄1+𝑄2= −λ
𝑇𝑖 − 𝑇0
𝑤

∙ 𝑡 +
∆𝑇 ∙ 𝑤 ∙ 𝜌 ∙ 𝐶𝑝

2

𝑑𝑄

𝑑𝑤
= 0 = −λ

𝑇𝑖 − 𝑇0
𝑤2 ∙ 𝑡 +

∆𝑇 ∙ 𝑤 ∙ 𝜌 ∙ 𝐶𝑝
2

For an optimum thickness

𝑤∗ =
2λ𝑡

𝜌 ∙ 𝐶𝑝
= 2𝑎𝑡

So, if we consider

𝑤∗ = 2𝑎𝑡

𝑄 = 𝑄1+𝑄2 𝑄 =
∆𝑇 ∙ 2𝑡 ∙ λ

𝑎

𝑄
𝑎

λ
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Case Study 18: 
Materials for Kiln Walls

𝑄
𝑎

λ
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Case Study 18: 
Materials for Kiln Walls

𝑄
𝑎

λ

+ Limit on max service  temperature
200 < Tmax <1000°C
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Case Study 19: 
Materials for Insulation for
Short-Term isothermal 
containers

Objective • Maximize the time t before internal 
temperature changes when 
external temperature suddenly 
drops

Constraints • Wall thickness (W)

Free Variables • Choice of the material
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Case Study 19: 
Materials for Insulation for
Short-Term isothermal 
containers

Fick’s Law for the temperature
at Steady state 

𝜕𝑇

𝜕𝑡
= a

𝜕2𝑇

𝜕𝑥2

𝑞. = −λ
(𝑇𝑖 − 𝑇0)

𝑤

q.

WE ARE NOT MINIMIZING THE HEAT FLUX!!!
WE WANT TO MAXIMIZE THE TIME t
BEFORE 𝑻𝟎 CHANGE CONSIDERABLY

w

𝑇𝑖

𝑇0

𝑇0+𝑖

𝑡 = 0

𝑡 > 0

x

q. = Heat flux
t = time 
x = distance of propagation of 
thermal equilibrium

a = thermal diffusivity

Fick’s Law for the temperature
at not-steady state 

Too complex, so
we use 𝑥 ≅ 2𝑎𝑡 ≤ 𝑤

𝑡 =
𝑤2

2𝑎

𝑡 𝑎𝑎 =
λ

𝜌∙𝐶𝑝
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Case Study 19: 
Materials for Insulation for
Short-Term isothermal 
containers

𝑡 𝑎
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Case Study 20: 
Process for a Can

Objective • Find an High production + Cheap 
process

Constraints • Shape : Dished Sheet
• Physical aspect :

1. Mass range max 1 kg
2. Tolerance 0,2-0,5 mm

• Primary Process

Free Variables • Choice of process
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Case Study 20: 
Process for a Can
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Case Study 20: 
Process for a Can



Materials Selection 54Monday, 05 November 2018

Case Study 20: 
Process for a Can
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Results : 
Deep drawing (deep drawing is a particular stamping)

Case Study 20: 
Process for a Can
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Deep drawing (deep drawing is a particular stamping)
Case Study 20: 
Process for a Can
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Secret slides : Kubota case
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Secret slides : Kubota case
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Secret slides : Kubota case


